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 Material properties can influence detonation in HE from mechanical insults 
through inelasticity

 (A), no reaction (B), a range of intermediate reactions, and (C) in between

 Time for “thermal run away” may be long!

DetonationRange of intermediate reactionsNo Reaction

(A)(B)
(C)

High explosives react from mechanical or thermal impulse
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Solutions of Henson-Smilowitz Thermal Ignition Model

 Initial temperature strongly affects time to thermal run away

 Arrhenius reaction rate kinetics

 Important to accurately model temperatures in simulations
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Henson/Smilowitz Thermal 
Initiation Model

HE Constitutive Model

T

80m

(1)

(2)

T  T ,Pnew

For non-shock ignition problems we need to couple a 
mechanical constitutive model with a thermal ignition model

A crucial point: T 
is the continuum-
scale temperature
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Experimental stress-strain data from 
D. Graff-Thompson et al. (LANL)

Constitutive Modeling: Stress-Strain Response of 
Many Plastic Bonded Explosives
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Damage by micro- to 
macro-crack growth

Experimental stress-strain data from 
D. Graff-Thompson et al. (LANL)

Stress-Strain Response of Many Plastic Bonded Explosives
Macrocrack: In situ  observations in 

tension
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Damage by micro- to 
macro-crack growth

Viscoelastic temperature and 
rate rate dependence (derived 
from polymer binder)

Experimental stress-strain data from 
D. Graff-Thompson et al. (LANL)

Stress-Strain Response of Many Plastic Bonded Explosives
Macrocrack: In situ  observations in 

tension

ViscoSCRAM is a macro-scale model that 
captures the essence of the viscoelastcity
and the micro-scale crack growth through 
continuum solid mechanics modeling
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900-21

900-21

-20C, 0.001/s

22C, 2300/s

-40C, 0.001/s

0C, 2300/s

55C, 2300/s

0C, 0.001/s

 Mechanical properties similar but not identical

 900-21 consists of barium nitrate (Ba(NiO3)2) with a plasticized estane binder

 A Mie-Grüneisen equation of state (EOS), with parameters adjusted to 9501

900-21 is an inert mechanical mock for PBX 9501
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900-21 sandwich targets contained 8 thermocouples at 
the midplane

Sandwich midplane before 
bonding
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Target preloaded to anvil to 
allow compression but exclude 
tensile reflections
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Two successful shots were conducted.  
The setup for each was slightly different.

Shot C
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Shot E

2 in2 in

Thermocouple 
radial distance 
more tight

Surface finish 
as-consolidated

Thermocouple 
radial distance 
varied widely

Machined (rough) 
surface finish
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Projectile in Shot C (709 m/s) arrested at thermocouple 
plane showing temperature rise at ball affected zone
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TC-1 destroyed by ball

Ball equator right at 
thermocouple layer

1 in

Bond layer delaminated 
due to low adhesion O

O
O
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Three thermocouples were nearly in contact with ball 
during Shot C.  Peak temperature rise was 56.7 K.
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Maximum temperature 
rise: 57.6 K

X O
O
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X
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--

Actual peak and rise time 
may be outside 
measurement bandwidth

Proximal

Destroyed

Remote

Proximal
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The projectile in Shot E (733 m/s) arrested 8.5 mm past 
the TC plane, giving temperature rise in the inelastic wake
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Obturator

Debris field completely 
encloses ball path

Bond layer adhesion much 
stronger with machined faces

8.5 mm

Reduced thickness 
incident layer
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TC channel 1 measured a peak temperature rise of 61.7 K. 
All other channels measured ∆T 10-30 K. 
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Improved bond made 
disassembly of TC 
plane impossible.

O
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Actual peak and rise time 
may be outside 
measurement bandwidth

Remote

Proximal
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--
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Proximal

Remote

O Intermediate-proximal

-- Intermediate
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Approximated ball- and wake-affected regions indicate 
higher temperatures nearer to ball in damaged zone
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Approximated ball and wake positions
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Inelastic wake
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Limitation: The TC amplifier bandwidth was 500 Hz, 
possibly smearing and lowering temperature peak
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Apparent temperature 
rise: 57.6 K
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Actual peak and rise time 
may be outside 
measurement bandwidth

Thermal conductivity of 
TC is ~2 times PBX

Heat capacity of TC is 
~60 times PBX
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Limitation: TCs measure averaged temperature field and 
affect apparent outcome
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----

O --

--
--
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Thermal conductivity of 
TC is ~2 times PBX
Heat capacity of TC is 
~60 times PBX

Improves quality of 
temperature measurement

Thermocouple wires 0.25 mm diameter; 
approx. averaging size scale
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Simulation in ABAQUS/Explicit with ViscoSCRAM VUMAT
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FEA predicted temperature rise comparable to experiment
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 Both ~80-100 K for 700 m/s within 1 mm of ball
 Higher velocities predict moderate increase in temperature
 Motivates work with flat projectiles 
 (increased shear and damage)
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Conclusion: TC averaged peak temperature during      
~700 m/s ball impact is likely below 100 C
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 Intrinsic time scale of TC measurement: ~100 Hz
 Improved time resolution must be optical
 Impact experiments are planned with round and flat 
penetrators with high resolution thermal cameras
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Thank You
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Abstract
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Modeling of thermal and mechanical events in high-explosive materials is complicated by the 
composite nature of the material, which experiences viscoelastic and plastic deformations and 
sustains damage in the form of microcracks that can dominate its overall behavior.  A mechanical 
event of interest is projectile interaction with the material, which leads to extreme local 
deformation and adiabatic heating, which can potentially lead to adverse outcomes in an 
energetic material.  Simulations of such an event predicted large local temperature rises near the 
path of a spherical projectile, but these were experimentally unconfirmed and hence potentially 
non-physical.  This work concerns the experimental verification of local temperatures both at the 
surface and in the wake of a spherical projectile penetrating a mock (unreactive) high-explosive 
at ~700 m/s. Fast response thermocouples were embedded radially in a mid-plane of a 
cylindrical target, which was bonded around the thermocouples with epoxy and recorded by an 
oscilloscope through a low-pass filter with a bandwidth of 500 Hz.  A peak temperature rise of 70 
K was measured both at the equator of the projectile and in its wake, in good agreement with the 
temperature predicted in the minimally distorted elements at those locations by a finite element 
model in ABAQUS employing the ViscoSCRAM constitutive model.  Further work is needed to 
elucidate the extreme temperature rises in material undergoing crushing or fragmentation, which 
is difficult to predict with meshed finite element methods due to element distortion, and also 
challenging to quantify experimentally.


